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1. INTRODUCTION

The 1980s may well be called the Euler era of applied aerodynamics. Computer codes based
on discrete approximations of the Euler equations are now routinely used to obtain solutions of
transonic flow problems in which the effects of entropy and vorticity production are significant.
Such codes can even predict separation from a sharp edge, owing to the inclusion of artificial
dissipation, intended to lend numerical stability to the calculations but at the same time enforcing
the Kutta condition.

One effect not correctly predictable by Euler codes is the separation from a smooth surface,
and neither is viscous drag; for these we need some forin of the Navier-Stokes equations. It,
therefore, comes as no surprise to observe that the Navier-Stokes era has already begun before
Euler solutions have been fully exploited. Moreover, most numerical developments for the Euler
equations are now constrained by the requirement that the techniques introduced, notably arti-
ficial dissipation, must not interfere with the new physics added when going from an Euler code
to a full Navier-Stokes approximation.

In order to appreciate the contributions of Euler solvers to the understanding of transonic
aerodynamics, it is useful to review the components of these computational tools. Space discretiza-
tion, time- or pseudo-time marching and boundary procedures are their essential constituents, to
be discussed in Sections 2-4. The subject of grid generation and, in particular, grid adaptation
to the solution, is worthy of a separate review and will be touched upon only where relevant; the
influence of computer architecture on the choice of discretization is covered similarly. Section 5
rounds off with a list of unanswered questions and an outlook for the near future.

2. SPACE DISCRETIZATION

While finite-element discretizations are gaining ground, the majority of codes for inviscid
compressible flow adhere to the finite-volume formulation. Two classes of finite-volume codes must
be distinguished: those based on cell-centered data that represent cell averages of the conserved
state quantities (refs. 1-3), and those based on cell-vertex data representing point samples of the
state quantities (refs. 4-6). Cell-vertex schemes have been the lesser studied but bear the promise
of a greater accuracy for a given grid (ref. 7), especially if the grid is unstructured. To appreciate
the difference between the two sorts of data, consider the integral form of the Euler equations in
two dimensions:
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On the left-hand side, we see the time derivative of the state vector u, averaged over the cell
volume V; ;; the right-hand side shows the boundary integral of the normal flux. The right-hand
side is called the residual, at least if a steady solution is sought. In order to compute it, we
only need data on the cell boundary; therefore, providing cell-vertex data is very efficient. In
contrast, if cell-averaged data are given, boundary data must be obtained by interpolation. On
the other hand, the left-hand side of (1) shows that cell-averaged data are the right choice for
bookkeeping in time, i.e. when computing transient flows. An approach in which the discrete
solution is described by a combination of cell-vertex and cell-boundary data is only known for
one-dimensional flow (ref. 8).

Among schemes based on cell averages, one may again distinguish two approaches to the
problem of finding boundary fluxes. In the “projection-evolution” approach (refs. 8, 9), boundary
data are obtained by interpolation on both sides of a cell interface; the two state vectors then
merge into one single flux vector by an “approximate Riemann solver” (ref. 10), which more
or less describes the interaction of two fluid cells at their interface. Almost all upwind-biased
schiemes follow this format. In the projection or interpolation phase, non-oscillatory interpolation
guarantees the absence of numerical oscillations in the final discrete solution (refs. 9, 11). The
latest development in interpolation is the reconstruction of discontinuous solutions (refs. 12, 13).

The other approach (ref. 1) is to compute at each interface a straight flux average, leading
to central differencing, and two different dissipative terms, one to stabilize the solution against
pattern instabilities (zebra, checkerboard), the other one to help out near shock waves. The
“artificial viscosity” approach has been shown to contain the same ingredients as the “projection-
evolution” approach, but implemented differently (refs. 9, 10). For a comparison, see figure
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Figure 1. Pressure-coefficient distributions on a NACA 0012 airfoil for M, = 0.80, a = 1.25 deg,
computed with codes based on upwind-biased (left) and central differencing (right). From ref. 2.
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For cell-vertex schemes, a theory of monotone interpolation has not yet been developed, so
artificial viscosity is still the only instrument to sinooth numerical solutions. It is worth noticing
that cell-vertex schemes are less prone to pattern instabilities than cell-average schemes (ref. 12).

No discrete solution can exist without specifying a computational grid. Structured grids as
building blocks in a strategy of domain decomposition (ref. 14) seem to be in the lead here, with
nested grid refinement (ref. 6) as a welcome accessory technique. Fully unstructured grids, such
as traditionally used in the finite-element method, form the alternative (ref. 15) (see figure 2); to
retain sufficient accuracy, use of cell-vertex schemes is mandatory (see figure 3).

3. MARCHING IN TIME OR TO A STEADY STATE

Unlike the transient-flow problemns of high-energy physics and astroplysics, problems of time-
dependent transonic flow are of a gentler nature, the time dependence usually arising in the form of
a slow oscillation about some mean state (ref. 16). The length of the characteristic time suggests
the use of timne steps greater than permitted by explicit time-accurate schemes, so implicit methods
have been favored in this area. More generally speaking. the most effective methods are those
that are also used to march to a steady state. More rapidly varying Hows, such as encountered
in turbo- machinery (rotor-stator interaction, ref. 17), require the full temporal resolution of an
explicit marching scheme.

The effort spent on developing time-accurate marching methods for aerospace applications
is scant, which clearly illustrates that this field is dominated by steady-flow problems. Still in
use is MacCormack’s predictor-corrector central-difference scheme (ref. 18); an upwind-biased
non-oscillatory predictor-corrector scheme was presented and tested in (ref. 19). These schemes
are examples of a “package deal”: space and time discretization are inseparable. A more general
strategy is to use a multi-stage Runge-Kutta-type schenie for the time integration, matched with
the chosen spatial differencing operator to form a stable overall method.

Interesting enough, multi-stage Runge-Kutta methods have predominantly been used to
march to steady solutions (ref. 1), without regard to their potential timme accuracy. When
developing Runge-Kutta methods for problems of time-dependent transonic flow, the same stan-
dards of accuracy and robustness must apply as those that led to the Piecewise Parabolic Method
(PPM) (ref. 20) and other schemes suited equally well for smooth flow as for shocked flow. A
breakthrough in this respect are the recently derived Total Variation Diminishing (TVD) multi-
stage schemes (ref. 21), which preserve the TVD property of the spatial operator while advancing
in time.

Regarding methods for marching to a steady state, explicit and implicit methods have been
going up and down in popularity as on a wheel of fortune. Some of these changes were driven
by developments in computer technology, others by advancement in munerical analysis. In the
mid-seventies, Approximate Factorization (AF) emerged as an efficient method for solving steady
inviscid problems (ref. 22). This is a relative of Alternating-Direction Implicit methods and
requires considerable storage for maximum efficiency, namely, storage of the block-LU decom-
position resulting from a line-inversion (this decomposition may be “frozen” for many iteration
cycles). Jameson et al. (ref. 1) avoided storage problems by developing an explicit marching
strategy based on a multi-stage time-discretization, use of “local” time-steps (constant Couraut
number rather than constant time step for the whole grid), residual smoothing and enthalpy
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Figure 2. Unstructured, adaptively refined grid (left) and corresponding pressure-coefficient dis-
tributions (right) for a multi-element airfoil obtained with a cell-vertex scheme. Also included

are results obtained with a finite-difference approximation of the full potential equation. From
ref. 15.
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Figure 3. Grid distortion (left) and associated numerical error (right) in the computation of
subsonic Ringleb flow with a cell-centered and a cell-vertex scheme. From ref. 7.
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damping (using the fact that the specific total enthalpy becomes uniform in the steady state).
Both AF and multi-stage marching schemes were combined with spatial discretizations based on
central differencing and explicit artificial viscosity.

Next, the introduction of upwind-biased fluxes in schemes for finding steady Euler solu-
tions (refs. 23, 24) led to a revival of the classical relaxation schemes such as Gauss-Seidel and
line/Gauss-Seidel. It turns out that these methods, developed for finding solutions of elliptic
equations, or steady solutions of parabolic equations, are the perfect match to upwind residual
approximations, owing to the inherent dissipativity of the latter. On a scalar computer, Alter-
nating Line/Gauss-Seidel (ALGS) relaxation easily outperforms AF (ref. 25), while requiring the
same computational effort (two block-tridiagonal systems solved per iteration); see figure 4a.

Almost at the same time, the introduction of vector computing again reversed the order of
preference among the known relaxation methods: although it requires considerably more itera-
tions, AF outperforms ALGS when comparing CPU times, because it vectorizes better (ref. 25);
see figure 4b. Such a radical changing of the guards suggests a search for new methods that
exploit vector arithmetics even more strongly. This is not a trivial job, as there is something
unnatural about the combination of vectorization and hyperbolicity. Hyperholic equations model
the propagation of signals moving in a continuum of directions, which is rather well imitated
by a series of Gauss-Seidel sweeps in alternate discrete directions. The very fact of sequential
dependence in Gauss-Seidel updating prohibits code vectorization to a great extent. It is worth
mentioning here that recently it was proved that Symmetric Line /Gauss-Seidel relaxation (SLGS)
is not unconditionally stable for upwind-biased Euler residuals (ref. 26). This accounts for some
earlier, unexplained non-convergence of numerical results (ref. 23).

1073 - 1073 -
1074 1074
1073 1070
1076 1076
_ 1077 1077
Residual 8 Residual
10° 10
1079 1070
ALGS
1010 1010
101 T
10-12 | 10-12 l | | I |
0 100 200 300 400 500 0O 20 40 60 80 100
lterations CPU time, seconds

Figure 4. A comparison of iteration strategies for the computation of a transonic flow (NACA
0012, Mo, = 0.8, a = 1.25 deg, 161x41 C-mesh, first-order upwind differencing). Left(a): conver-
gence of Alternating-Line Gauss-Seidel (ALGS) relaxation and Approximate Factorization (AF)
in terms of number of iterations; right(b): in terms of CPU seconds on a Cyber 205 vector
computer. From ref. 25.
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Meanwhile, multigrid relaxation, a fully matured technique for solving elliptic equations,
has been shown to be a valuable accessory technique for removing long-wave components in
distributions of Euler residuals (refs. 27-29). Tlis, again, is causing a shift of interest from
implicit to explicit relaxation methods, with the boom still to come. For a better understanding,
it should be said that the basic marching scheme in a multigrid strategy must be a good relaxation
scheme only for the short-wave components in a residual distribution; such a scheme is called
a “smoother.” In a discrete distribution, wave lengths scale with the cell size, so when going
to coarser and coarser grids, the shortest wave that can be represented on the grid eventually
becomes as long as the largest scale in the problem. Explicit marching schemes for the Euler
equations can be designed to damp just the shortest waves without going beyond the stable range
of the time-step, and therefore seem to be the perfect match to multigrid relaxation. In contrast,
implicit schemes, such as line relaxation, will also attack long one-dimensional waves, which would
seem unnecessary in a multigrid framework.

The highest possible achievement of a multigrid scheme is the so-called “multigrid conver-
gence”: convergence in a fixed number of multigrid cycles, regardless of the cell size of the finest
grid. Such convergence has actually been realized in solving a simple channel-flow problem (refs.
30, 31); see figure 5. The fly in the ointment is that classical multigrid has also been shown not
to work in very similar inviscid problems. This is caused by loss of information during coarsening
when long waves in one direction are coupled to short waves in another direction, a situation

that can arise when the grid is aligned with a stratified flow over an appreciable distance, as in
channel flow (ref. 32), or when it is strongly stretched (ref. 33). Under these circumstances, one-
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Figure 5. Convergence histories for the computation of the flow at M,, = 0.85 over a circular
bump (thickness .042 of chord) in a channel, using first-order upwind differencing and multigrid
relaxation on three different grids. In all cases, the slower convergence is for the single-grid scheme;
the total work for the multigrid scheme stays constant for grids on which the flow features are
sufficiently resolved. From ref. 30. (Copyright (c)1985. Academic Press, Inc.)
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dimensional coarsening rather than multidimensional coarsening should be considered. It turns
out that the need for semi-coarsening was already demonstrated in an early mwultigrid applica-
tion to the potential equations (ref. 34); a full utilization of semi-coarsening has recently been
proposed and analyzed by Mulder (ref. 35). The latter method has an appreciable degree of par-
allelism (yet to be exploited) and shows convergence rates for subsonic, transonic and supersonic
channel flows between .3 and .4 per multigrid cycle.

With multigrid relaxation finally outgrowing its “elliptic” origin and becoming robust for the
Euler equations, a new wave of advanced explicit algorithms is awaited with impatience. These
algorithms do away with models of coordinate-wise wave propagation on which all present dis-
cretizations, including the upwind-biased ones, are based; instead, discrete models of the infinite
variety of multidimensional wave motions are adopted. The basic concepts have been formulated
(refs. 36, 37), but it is at present not clear how to incorporate these into robust marching meth-
ods. Yet, this development promises significant gains in accuracy, efficiency (see figure 6), and
generality, while retaining programming simplicity and matching the computer architectures of
today and tomorrow.
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Figure 6. Effect of preconditioning on the computation of one-ditnensional transonic nozzle flow
with a first-order upwind scherie. Shown are the convergence histories resulting from the use of
(1) the same time-step in all cells, (2) the maximuim time-step in each cell (the so-called “local”
time-step) and (3) the maximum time-step for each characteristic wave in each cell. The latter
technique requires decomposition of the residual into wave contributions, which is needed anyway
for upwind differencing, and leads to significant savings.
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In the area of implicit methods, on the other hand, the tendency is to move toward greater
complexity. With in-core storage capacity orders of magnitude larger than a decade ago, genuine
Newton methods have been formulated and implemented using direct rather than iterative solu-
tion techniques for the large linear systems arising in the process (ref. 38); see figure 7. These
methods are almost competitive with relaxation methods for the number of unknowns typically
encountered in two-dimensional calculations, and a lot more robust. The main contribution to the
complexity is the derivation of the full Jacobian of today’s sophisticated numerical lux functions
such as Roe’s (ref. 39). If progress is to be made in this direction, automation of the algebra of
differentiation, or, alternatively, reliance on numerical differentiation, seems to be inevitable. Any
increase in generality, such as applicability on unstructured or locally refined grids, will involve a
major programming effort.
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Figure 7. Pressure-coefficient results and convergence history of a transonic-airfoil computation
(NACA 0012, M, = 0.80, a = 0 deg) with a full Newton method. Note the quadratic convergence

of the residual in the final phase. From ref. 38.
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The abundance of core memory in modern computers is also a stimulus for the development
of marching methods based on multiple iterates. Most classical iteration schemes make due with
information exclusively from iteration level k when advancing to level k-1, thus ignoring the
information contained in the first k-1 iterates. Obviously, this information might give clues as
to the best way to proceed beyond level k. Since each iterate of a numerical solution can be
represented by a large vector, and the aim of iterative methods is to make this vector converge to
some unknown final value, this subject is commonly referred to as “convergence acceleration of
vector sequences” (ref. 40). The label suggests that the convergence of the vectors can be studied
without in-depth knowledge of the physics represented by the vectors. This is probably as true
as the statement that all CFD problems are similar to solving Laplace’s equation on a rectangle.
Some recent applications of acceleration methods like GMRES (Generalized Minimum Residual
Method), MPE (Minimum Polynominal Extrapolation), reduced-rank extrapolation and Wynn’s
e-algorithm (see figure 8) can be found in references 41-45.
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Figure 8. Convergence acceleration for two transonic-airfoil computations by the use of Wynn’s
e-algorithm. The residual decreases sharply upon application of the acceleration technique after
250 iterations. Left: Korn airfoil, M, = 0.75, o = 0 deg; right: NACA 0012, A, = 0.80,
a = 1.25 deg. From ref. 45.

One aspect not addressed at all in these papers is the inherent nonlinearity of the CFD
problem to be solved. When solving problems of steady transonic flow there actually are two
separate but related questions:

1) how to efficiently march from an arbitrary initial guess to within the range of attraction
of the steady solution;
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2) how to quickly converge to the steady solution from a nearby state.

Vector-sequencing strategies address the second problem, which is the easier of the two owing
to the validity of linearization. The only current methodology that also addresses the first problem
is full multigrid.

4. BOUNDARY PROCEDURES

How to derive nou-reflective far-field boundary conditions has been pretty well understood
since the appearance of a key paper by Engquist and Majda (ref. 46). For the Euler equations,
a safe technique is to discretize the characteristic equations for waves moving outward normal to
the boundary; supplemental conditions regarding the far field may be provided in the form of free-
stream values. Greater accuracy, faster convergence and a smaller computational domain are the
benefits of a more accurate description of the far field, based on various kinds of expansions of
the solution (see, e.g. ref. 47). The most remarkable reduction in the computational domain has
been demonstrated by Ferm and Gustafsson (ref. 48); see figure 9.
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Figure 9. Isobars for the incompressible flow over NACA 0012 airfoil. computed with Ferm
and Gustafsson’s (ref. 48) “fundamental boundary conditions.™ Solid-line contours are from the
solution on the larger domain (8, ), dashed lines are for the smaller domain (9Q;).

5. CONCLUSIONS

During the past decade, Euler solvers have come of age. Accuracy and efficiency of to-
day’s finite-volume Euler codes are sufficient to deliver detailed two-dimensional and useful three-
dimensional flow solutions.

The accuracy achieved is somewhat surprising, as the ingredients for the spatial discretiza-
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tions are almost exclusively based on a one-dimensional analysis, applied coordinate-wise. The
insufficiency of this strategy shows up, for instance, as a loss of resolution of shock waves and
shear waves oblique to the grid. Keeping in mind the even higher resolution required for a Navier-
Stokes solution, it appears necessary to develop truly multi-dimensional numerical building blocks
for use in future Euler codes.

Independently, the development of grid-adaptation techniques will support solutions of high
accuracy at a reasonable cost. To comply with complicated geometries, the use of unstructured
triangular and tetrahedral meshes is gaining ground; this in turn is stimulating the development
of cell-vertex-based spatial discretizations, which are relatively insensitive to grid deformations.

On the efliciency front, multigrid relaxation and vector-sequence convergence acceleration are
the two auxiliary techniques that bear the most promise of making three-dimensional calculations
feasible and robust. The explicit marching schemes on which these techniques build, however,
remain to be optimized as regards their capacity to sinooth short waves and to overcome stiffness
of the equations. Again, a truly multi-dimensional approach is needed.

Among implicit methods, Newton’s method with full Jacobian evaluation and direct solution
of the linearized system, is now competitive in obtaining two-dimensional flow fields; at present,
the extension to three dimensions does not seem feasible.
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